
 
Semantic Symmetry Evaluation 

 
 

Asha Anoosheh 
ashaa@student.ethz.ch 

 
 

 
Introduction 
 
Symmetries, in general, can be thought of a pattern - or a subset of one - that can be mapped onto 
another subset of itself. This can be translational, requiring only translation transformations, 
rotational, requiring only rotation transformations, or reflectional, requiring only mirroring along 
an axis. Of course, something can have multiple of these symmetric properties, as well.  
 
Symmetries can be important to many computer-vision related tasks as recognizing patterns in 
images usually implies something of interest, such as recognizing building facades via 
translational symmetry of the windows, or identifying disorders in medical imaging if anomalous 
asymmetries are found. 
 
A special case to observe is within the area of reflective symmetries, particularly when the 
symmetries are not literal. Current methods for detecting or evaluating reflection symmetries in 
images compare traditional visual descriptors from the RGB pixel-space of the image, or, more 
often, just compare the raw pixel values directly. When the symmetry in an image is semantic - 
found in the human-interpretable meaning of the picture content - rather than direct, these 
algorithms cannot capture the semantics within these symmetries. 
 
The aim of this project is to try and observe the same, higher-order symmetry that the human 
visual system can perceive, rather than simply aligning RGB information. In particular the focus 
is mainly on vertical reflections, though it can be seen later how to use this for rotational 
symmetries as well. This is useful for cases where aesthetic appeal may want to be evaluated for 
images, such as in marketing, as humans are known to visually prefer symmetries over 
non-symmetries. It is also useful for progressing toward a better understanding of how humans 
understand symmetry so one can more closely replicate it. 
 



The method used here involves Convolutional Neural Networks (CNNs), which possess the 
complexity required to automatically extract meaningful features in high-dimensional data (i.e. 
images) and perform tasks such as classification on them - all in a single unit. One of these 
networks consists of initial convolutional layers, which are trained to find kernels that return 
high values for certain features they encounter, followed by fully-connected layers to perform a 
task-specific function such as classification or decoding. If a CNN is trained to classify object(s) 
in an image, its initial convolutional layers will be trained to detect key features that discriminate 
specific classes of objects/figures/animals/etc found in an input image. The output of this can be 
used as features for comparing the symmetry within an image; therefore, if similar classes are 
found in both halves of an image, regardless of their orientation or color, they can be matched as 
the same or similar type of content. The output of each convolutional layer kernel is a map 
slightly smaller than its input (due to convolutional strides that may be present) that for each 
pixel indicates how strongly it elicits a response from the kernel; additionally, each layer has 
dozens of kernels, for different types of activations, most corresponding to a different 
“meaning.” 
 
In this work, various types of images are passed through convolutional layers of a network 
already trained to perform classification, then the activations are used in a number of ways (to be 
detailed) to calculate a score for the amount of vertical symmetry in each given image. 
 
 
Related Work 
 
A simple, existing approach to evaluating reflective symmetry is the Symmetry-Distance 
function found in Kazhdan et. al [1]. It uses a simple L2 norm of an image minus its flipped 
version; their function is one of the ones used in this project (compared against even more.) 
Another method, from Amirshahi [2], is not meant for evaluating symmetry persay, but rather 
self-similarity, which is equivalent in our case for a vertical axis. These are detailed further on. 
 
Papers that are very closely related to this include Lettry and Vanhoey [3], which aims to detect 
repeating lattices for translational symmetry in images using the activations in neural networks, 
and Brachmann and Redies [4], which was published toward the end of this project, and aims to 
quantify vertical symmetry in images just like our goal, except using a different measure on the 
network activations produced. Ideas from both will be incorporated into this paper for evaluation 
against each other.. 
 
 
 
 



Goal 
 
The goal is to find a method of quantifying symmetry in images, in a semantic sense rather than 
a descriptor-based one. The human perception of semantics is a nuanced one that varies from 
individual to individual. Humans can describe the ideas present within images and find 
symmetry in their presentation, whereas current algorithms can only find features to corners to 
mathematically match and quantify. The high-level knowledge of what the scene contains is 
crucial to identifying this potentially different form of symmetry. 

 
 
Methodology 
 
The process starts with feeding an image into a Convolutional Neural Network, pre-trained on 
image classification. We can extract the feature maps (activations) of the images from the 
convolutional layers. A convenience of convolutional layers is that they operate spatially and 
preserve the scale, orientation, and spatial structure of the input image, meaning the output is not 
uninterpretable as with traditional fully-connected layers. These features that are produced are 
spikes of activations in the kernels they excite; so a neuron sensitive to dog noses will fire on the 
pixel region of a dog nose in a photo. And as one goes down the layers toward the later 
convolutional ones, we see that their kernels operate on smaller versions of the image (as it is 
downsampled on its way through the network) meaning it is receptive to a much larger field and 
can capture scene elements, large whole objects, animals, etc. 
 
With these feature maps, we essentially have many images of the same size, on which we are 
free to experiment with many symmetry-detection/scoring algorithms. Additionally, these can be 
done at each convolutional layer to observe the different “kinds” of symmetries computed at 
each level. One would expect the initial layers to capture more color and texture-based 
symmetry, while the later ones capture the more semantic ones. 
 
The project, as a whole, uses four different algorithms to calculate the symmetry of a given 
image or activation, as a single scalar value. As they (almost) all only work on 2D matrices, the 
RGB images are always turned to grayscale while the activations are flattened using one of three 
different techniques. 
 
The first is the function found in [1], referred to here onwards as Reflection. It does not produce 
normalized numbers on its own, and therefore only relative ranking of images can be analyzed. 

core(I)  s =  |||| 2
I  − flip(I) ||||   

 



The second is a simple normalized differencing term, referred to as Difference: 
core(I) s =  sum(I)

sum( I  − flip(I) )| |  
 
The next is the self-similarity measure adapted from the PHOG in [2] which will be referred to 
as Histogram. This is also normalized, producing values in the range [0,1], and it recursively 
computes subscores until a maximum depth, which are averaged at the end. The original 
algorithm uses oriented gradients, but for activation maps, this is not meaningful and is replaced 
by total energy instead. 
or d 2...maxDepth  f =  :  

split I into 2  equal sections  Id =  i nd sum values within each section  a  
eft, right leftHalf(I )  ,  rightHalf(I )  l  =  d  d  
ubScore histIntersection( left / sum(left), right / sum(right) )  s =    
otalScore = subScore / d  t +   

 
The last one comes from [4], referred here as Dual. It is slightly different from the others in that 
it uses activations two sets of activations instead of just one. It runs both the unflipped and 
flipped (vertically) versions of the image through the network independently, and compares the 
corresponding results. Additionally, this method is a bit odd as convolutional layers are mostly 
invariant to translational and mirrored inputs, so the resulting activations from the flipped input 
should, in theory, not differ significantly from simply the flipped version of the unflipped 
activation. 

core(I) s =  sum( I  − flip(I) )|   |
sum(elemwiseMax( I, flip(I) ))  

 
As mentioned before, the activations must be flattened from 3D to 2D somehow, and for this I 
have experimented with three approaches. The first is to stack the activations on top of each 
other, essentially losing no data and making it 2D. The second is to sum the activations in the 
channel dimension, keeping all raw value information, but losing third-dimension position of 
each. The third is inspired by [3], which instead takes the pixelwise maximum in the channel 
dimension, losing even more information than the former, but - ideally - reducing the dimension 
down to the most relevant, unnoisy activations. Though in the original, the maximum is taken 
across all layers, whereas here the layers are to be kept independent, so maxima are taken only 
intra-layer. 
 
 
We have many possible tasks to experiment with here; the following were chosen for analysis 
and visualization in this report: 

1. Activation maps from HybridNet are visually compared next to ones from the VGG-16 



2. A single image is scored at each layer (including raw image) to compare scores with 
activations 

3. The relative-score difference between image and activation spaces are compared per 
algorithm and per flattening method 

4. Chosen algorithms from the prior trials are re-compared across HybridNet and VGG-16 
5. Images from an evaluation set are ranked in the image space and activation space 
6. Selected screenshots from movies are ranked at every layer, including from raw image 
7. Randomly-selected album covers ranked in the image and activation spaces 
8. Reflective symmetry is evaluated about many rotational axes of the image and the best 

one is chosen. The largest differences between those gathered from the images are 
compared with those calculated from activations 

9. The evaluation set is once again ranked, but according to a rotational symmetry measure - 
the sum of reflective symmetries for each discretized axis through its center. 

 
 
Data 
 
The images to test on were hand-picked, obtained from various, license-free sources on the web. 
There are three image sets used for experimentation. The main one consists of carefully-selected 
images containing different types of symmetries, as well as in both the semantic and literal 
senses. Another consists of stills from during notable movies, and the last is a collection of 
randomly-gathered album covers, due to their inherently-square shape. 
 
For the pre-trained CNN, I use two for comparison. The ideal network for this task is one that is 
trained on both objects and scenes from the ImageNet and MIT Places datasets, respectively. 
Fortunately there happens to be one for this, known as the MIT HybridNet [5].  Another more 
recent and advanced model is known as VGG [6], which theoretically should produce better, 
more meaningful activation maps, but takes much longer to run due to very high gpu-memory 
requirements and it only trained on ImageNet. I use the VGG-16 network for comparing against 
the HybridNet in some trials. These are used with the Caffe framework. 
 
 
Changes and challenges along the way 
 
The main challenges included finding a suitable algorithm for quantifying symmetry such that 
the score would not be (too heavily) influenced by the raw amount of pixel values. This included 
the dilemma of using original size images versus resizing them to the size the network was 
trained on. On one hand, since no size-dependent layers are used in the networks, the input 
images could be of any size and not be distorted by resizing. On the other hand, having a 



consistent number of pixels among images ensures no issues related to the calculated score being 
influenced by it. Additionally, since the network was originally trained on images of 227x227, 
the filters are accustomed to features of its own scale; therefore, I eventually stuck with the latter. 
 
In addition to multiple architectural redesigns in the entire pipeline to alleviate limited memory 
constraints, additions were also made along the way to the symmetry-quantification algorithms. 
One problem with a yet-unclear answer is how to combine the many activation maps from each 
layer, whether they should be combined across layers even though their sizes do not match, or if 
they should be combined at all. In Louis et. al, there is one activation per image regardless of 
layer count, as all activation maps are resized to the same size, then the maximum is taken across 
the pixels. Since I want to keep layers separate in order to evaluate their scores, I used this idea 
but only taking the maximum of activations per layer, in addition to my initial ideas of using the 
pixelwise sum of the activations, and comparing both to the raw activations (stacked). 
 
Another problem was how to choose a “final” score among each layers’ scores to use for 
evaluation. Even though each layer still has its own score for analysis purposes, it’s not 
convenient to have to visualize and analyze 5 to 15 score lists each time, so it’s useful to 
combine them in a meaningful way to have a single value per image. This also incorporates the 
tying together of different meaning of each layer’s responses (from image to semantic), rather 
than having a purely semantic or purely image-based score. Initially, the median of the score 
values was taken, yet it almost always ended up being the middle-most layer’s values for 
algorithms that did not produce an inherently-normalized score, as the amount of pixels often 
determined the magnitude range of the scores. Instead I opted for a geometric mean over all 
layers, which handles the potential case of large variations in magnitude among values. 
 
 
  



Results 

 
 

Activations of above test images from HybridNet (left) and VGG-16 (right) 

 



Comparison of symmetry scores at each layer compared to raw image (using histogram) 

 Image Score 

Data 

 

0.400 

C1 

 

0.878 

C2 

 

0.920 



C3 

 

0.871 

C4 

 

0.642 

C5 
 

0.442 

C-max 

 

0.807 

 
 
 
 
 
 
 
 
  



 
 
 
 

Evaluation set images:  Sum of relative-score differences between image scores and layer scores 
 

 Difference Reflection Histogram 

Stack 8.63 3.31 5.24 

Sum 3.94 3.01 5.67 

Max 3.83 2.89 11.56 

 
 
 
 
 

HybridNet vs VGG:  Sum of relative-score differences between image scores and layer scores  
 

 Hybrid-Net VGG-16 

Diff-Max 3.83 2.99 

Refl-Max 2.89 2.11 

Hist-Stack 5.24 8.22 

Dual(-Stack) 31.11 <lack of memory> 

 
 
 
 
 
  




