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Abstract

Training deep neural networks has traditionally been done on single machines.
However, recent developments have shown several methods to distribute the
training process and the training data across a network of multiple machines.
Previous works showed that the distributed implementations move the bottleneck
of training time from the CPU/GPU performance of a single machine to the
communication delay between machines. In this paper, we demonstrate multiple
methods to alleviate these bottlenecks on distributed convolutional neural networks
while retaining classification accuracy.

1 Introduction

In recent years, there have been multiple works on finding ways to reduce training time for neural
networks by distributing the workload over multiple nodes, including methods that have been kept
proprietary by some companies. However, past a certain number of nodes, the distribution of the
training workload to many nodes no longer proves effective, as the bottleneck becomes the Inter-
Process Communication (IPC) during synchronization. Here we explain multiple approaches to
remedy this bottleneck by reducing IPC.

1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have proven to be popular for image recognition tasks in the
past few years. Compared to traditional neural networks, they avoid fully connected layers closer to
the input layer. Rather, layers consist of multiple small kernels that are convolved with their input. As
a result, weight matrices can be much smaller for high resolution image inputs. This cuts the number
of parameters greatly, relative to fully-connected networks, and allows for significantly faster training
times. In this paper we focus on convolutional networks trained using stochastic gradient descent
(SGD) only.

An important aspect of neural net training to note is its ability to train in mini-batches, moving
stochastic gradient-descent closer to batch gradient-descent. Multiple inputs can be passed in
simultaneously, and their resulting gradient matrices are simply added together element-wise to form



a larger gradient that is to be used to change the network parameters, making the resulting descent
steps smoother and hopefully in the direction of a local minimum more representative of the data as a
whole. This idea is important for the discussion of distributed nets.

1.2 Distributed neural networks

The training times of deep CNNs on large datasets, such as the millions of images used for most
image classification tasks, are still on the order of days, even using the highest-end GPUs. This makes
performing various experiments on a network or tuning hyperparameters cumbersome, as one may
have to wait days for each training configuration to complete.

Distributed neural networks aim to reduce training times by spreading the work over a multiple
machines. There are multiple design architectures used for distributing networks, namely model-
parallel and data-parallel. The former spreads a single network across multiple machines; in this
paper we focus on the latter, which divvies different input data to multiple replicas of the network
running in parallel. More specifically, we imagine the setup used many systems where each node
in a cluster has an identical copy of the network on it [2]. Data is partitioned along the mini-batch
dimension, so in the case of CNNs, that means distributing a network with batch size b among n
nodes gives each node b

n data points (images). Such architecture patterns are described in further
detail in Dahl et al.[1].

Following each forward/backward pass, all gradients are calculated and summed up locally per
node, yet no weight updates are performed until all nodes synchronize their gradients. To ensure the
network stays consistent across all nodes at all times, the gradient matrices of each node must be
added together to represent the update of an effective batch size of b. Only then the update step is
performed. This means each node must block its operation until everyone has synchronized.

The actual communication is assumed to be done as is standard: by transferring data from the
GPU to CPU (assuming we always use GPUs for our CNNs), encoding the data for the desired
network transmission protocol, and sending it across network interconnects to another node. These
synchronization processes are now known to be the bottlenecks holding distributed networks from
efficiently scaling past a certain number of nodes, and thus the target of our experiment [2].

Figure 1: High-level view of data-parallel distributed net.

1.3 Goal

Given a cluster with a copy of the same convolutional network on each node, we aim to reduce the
amount of data synchronized among worker nodes, thus reducing the total synchronization time
for the entire cluster while maintaining acceptable accuracy. Currently, nodes in the distributed

2



network described send entire gradient matrices; we abandon this in favor of lowering interprocess
communication. In practice, most of the gradients propagated to a layer at each iteration are nonzero,
but very close to zero [9]. Instead of inefficiently propagating gradient matrices that contain such
small values, we can avoid unnecessary communication by undertaking a solution that delays weight
updates by thresholding gradient values prior to inter-node communication.

A clear potential problem with doing this is that, while training time is reduced, the trained neural net
will bear a different and likely lower accuracy. Furthermore, the decrease in accuracy also depends
on the value of threshold chosen. Thus, it is important to find the best threshold that balances the
tradeoff between accuracy and training time reduction. Our goal is to experiment and analyze with
different threshold values and algorithms to explore this tradeoff.

1.4 Related works

Our inspiration came from the distributed neural net framework, FireCaffe, by Iandola et al., whose
paper mentions the potential use of a novel gradient synchronization scheme for distributed neural
nets as devised by Amazon [4] [9]. Such a scheme was not explored with Firecaffe, and thus it is
implemented in this experiment.

Amazon’s scheme synchronized only gradients whose absolute value exceeded a threshold τ , and
furthermore only communicated gradients as either τ or −τ (represented over the network as 1
or 0 for concision,) accumulating the residual values for future synchronization iterations. Their
distributed network performed word recognition on a proprietary dataset achieved results, achieving a
54x speedup on a 80-node cluster with less than 2% relative error reduction. Yet having only relative
error numbers for an unknown proprietary dataset is not entirely conclusive in our opinion. This is
one of the methods we explore in this paper, with the aim to record both absolute and relative errors
on a completely different type of dataset and network, namely image recognition with convolutional
neural nets.

Two more similar techniques instead perform more standard quantization techniques to the gradients.
The first, by Seide et al., still maintains the residual-buildup property, yet computes multiple quantiza-
tions per iteration to achieve 1 bit communicated gradients [8]. The quantization function and scheme
are not described in detail, and like the Amazon scheme, it is performed on a speech-recognition
model rather than a CNN. The other, by Oland and Raj, computes entropy of the gradients each
iteration and utilizes Huffman encoding before sending them, meaning each node communicates
dynamic and uniquely compressed numbers [13].

Other methods, which will not be elaborated upon for sake of brevity, include Async-SGD, Elastic
Averaging, Model Averaging, this one weird trick, and Downpour SGD, which was used by one
of the first distributed machine learning systems, Google’s DistBelief [11] [12] [10] [6] [2]. These
various synchronization reduction schemes, although they strive to achieve the same goal, are not as
closely related to ours as the above two are. Yet these, and all the aforementioned methods, achieved
significant success in their targeted purpose, and helped guide our experimental choices.

2 Method

We target the aforementioned gradient matrices communicated in a distributed network in two ways:
reducing the representation size of the numbers in each matrix and/or reducing the number of elements
sent overall. While the former will always reduce the amount of communicated data, the latter will
only decrease data should the number of elements sent be less than half the total size of its matrix
(over half the matrix is zeros). If this is satisfied, the matrix is said to be sparse, and the gradients can
be efficiently represented as a sparse-matrix data structure, reducing communicated data even further.

Not only would this decrease the number of data packets sent across the network interconnecting
the compute nodes, it also means much less time spent encoding data for communication by each
CPU, as well as reducing the amount of data transferred from the GPU to the CPU for the network
communication to occur in the first place. We assume the cost of performing this newly-introduced
thresholding operation on GPU is negligible compared to these other advantages, as it is a single-pass,
parallelizable kernel call for each layer’s gradient matrix.
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Though there exist various implementations to lessen the number of total node-to-node communica-
tions that must occur to achieve full synchronization, each node sending out its gradients at least once
is unavoidable. Thus our experiment is designed to be independent of the synchronization method
used and only on this fact.

2.1 Procedure

We implement three different approaches, each making use of an unknown threshold value T , to our
task: Whole gradient-transfer (WGT), Binarized gradient transfer (BGT), and Quantized gradient
transfer (QGT). The first simply places a fixed threshold on gradients prior to synchronization: only
gradients with a magnitude greater than T will be sent, while the remaining values are summed
over time so they may be sent in future iterations. The second is the approach taken in Amazon’s
experiment: if a gradient has magnitude greater than T , then either T or −T will be sent (depending
on the original sign of the gradient,) and its difference will be stored as before. The last approach,
inspired by that of Seide et al., is quantization of the gradient values using a method similar to the
second approach: if a gradient has magnitude greater than T , then the greatest multiple of T less than
the gradient magnitude will be sent.

Of course since T is fixed for the duration of a training run, every node knows its value, and we can
restrict the sizes of each gradient value sent. The gradients in WGT are the same size as the default,
which we assume are 32-bit floats. In BGT, we can simply send any two binary indicators (i.e. +1
and −1) to represent T and −T , meaning only 1 bit required per gradient. Similarly for QGT we can
just send the number of multiples of T instead of the actual value. We purposely restrict this multiple
to be less than 256, so that it can fit in a single byte, or 8 bits. Reducing the number of bits required
to represent the data will reduce the overall data bandwidth.

The three methods, denoted as a, b, and c respectively, are formalized as follows:
Given a layer’s gradient array G and a threshold T , perform

for i← 1 to length(G) do
if |Gi| ≥ T then

(a) send Gi

Gi ← 0

(b) if Gi > 0 then
send T
Gi ← Gi − T

else if Gi < 0 then
send −T
Gi ← Gi + T

(c) m← bGi

T c · T
m = min(m, 255)
send m
Gi ← Gi −m

after each backpropagation step and before each weight update of a single node.

It is very important to note that these all keep the residual of their thresholded values from G locally,
summing them into the next iteration’s gradients, so that they may eventually be communicated. Thus
it doesn’t avoid these updates, but rather delays them. And the actual threshold step takes O(1) time
within each layer, as it is a parallelizable filter-and-partition done via a single-pass CUDA kernel,
visualized in Figure 2.
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Figure 2: Thresholding procedure on GPU.

2.2 Setup

This experiment was performed running Caffe using an NVidia Tesla K20c GPU [5]. The CNN
model chosen was the Network-in-Network (NiN) trained on the famous ImageNet dataset [7] [3].
We used a batch size of 128 and trained for 220,000 iterations, using a base learning rate of 0.01,
momentum of 0.9, weight decay of 0.0005, and a factor-of-ten learning-rate reduction every 100,000
iterations.

The NiN achieves AlexNet accuracies with a model size of 29MB compared to AlexNet’s 230MB;
this is already one of the smallest model sizes on a competitive ImageNet-trained [7]. We use this
compressed model to secure an already-suitable starting point for distributed communication before
applying our further optimizations to it, which should render our results more meaningful.

We did not have access to a cluster to implement a truly distributed network. But since a distributed
network with n nodes is identical to a network with n times the batch size, we can simulate this
locally. Performing our threshold operations on n equal partitions (in the batch-size dimension) of
each layer’s gradients will achieve the same result. Here we arbitrarily chose n = 8 as our number
of "nodes" to hold constant throughout the experiment, meaning our T values are being tuned for
128
n = 16 images per node; though it’s easy to see that the ideal T should, on average, increase

linearly with this number as it is a summation of similar values. In practice nmay be much higher, but
that also means the relative speedup from communication reduction shall be even better, theoretically.
Yet because of this simulated scenario, we cannot quantitatively measure the decrease in computation
and communication that will result from a true distributed environment.

A downside is that thresholding in general will cause double the memory usage per layer, as partition-
ing the gradient matrix into the to-be-sent matrix and the residual matrix results in two matrices of
the same size, as the former matrix is sparsified only after this step. This is why the batch size had to
be sliced to 128, even though our GPU could handle 256. Though the resulting accuracies between
these two sizes are approximately equal in the end.

3 Results

3.1 Baseline

Our baseline with no modifications achieved a top-1% accuracy of 57.9175% on the validation set.
The number of gradients communicated by all nodes per iteration (using a batch size of 128,) is
60,719,360. So over 220,000 iterations, 13,358,259,200,000 gradients are communicated total. Under
the assumption that the gradients are, by default, sent as 32-bit floats, just over 53,433 GBs must be
sent over the course of the whole training, in the conventional implementation.

Note that this is merely the communication of each node outward once, serving as a lower bound. It
does not include the potential extra communication that occurs in certain synchronization models
nor the unavoidable overhead of the data structure used – most likely a csr-sparse-matrix in this case,
whose overhead is linear in the number of data points anyway.
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3.2 Whole gradient transfer

Table 1: Whole gradient transfer results

Threshold Top 1% accuracy Total GBs transferred Ratio (%/GB)

5e-4 58.2681 15583.03 0.0037
7.5e-4 58.1941 11134.76 0.0052
8.75e-4 57.9464 9691.21 0.0060
1e-3 57.9424 6572.01 0.0088
2.5e-3 57.2790 2723.90 0.0210
5e-3 56.4698 933.35 0.0605
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Figure 3: Accuracy vs data communicated.
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Figure 4: Communication fraction vs iteration
for T = 5e-3.

3.3 Binarized gradient transfer

Table 2: Binarized gradient transfer results

Threshold Top 1% accuracy Total GBs transferred Ratio (%/GB)

6.25e-4 51.6584 396.85 0.1302
8.75e-4 54.6196 316.63 0.1725
1e-3 55.0432 279.65 0.1968
5e-3 55.6646 31.22 1.7829
6.25e-3 55.9303 21.34 2.6215
8.75e-3 55.6945 12.15 4.5840
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Figure 5: Accuracy vs data communicated.
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Figure 6: Communication fraction vs iteration
for T = 8.75e-3.

3.4 Quantized gradient transfer

Table 3: Quantized gradient transfer results

Threshold Top 1% accuracy Total GBs transferred Ratio (%/GB)

5e-6 57.1371 12055.74 0.0047
1e-5 57.8625 11632.94 0.0050
5e-5 58.3640 9879.56 0.0059
1e-4 58.1682 8525.72 0.0068
5e-4 57.9224 4204.91 0.0138
8.75e-3 56.2720 123.88 0.4542
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Figure 7: Accuracy vs data communicated.
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Figure 8: Communication fraction vs iteration
for T = 8.75e-3.

4 Analysis

Naturally, we’d expect the resulting accuracies of thresholded experiments to be lower than that of the
baseline. However, for some WGT and QGT trials, we notice the accuracies end up slightly higher
than the baseline. It seems to indicate that these types of thresholding can be, to some extent, a form
of regularization, as it removes small, noisy gradients and accumulates them for a later, "smoothed"
update. Another explanation is fluctuations in the final accuracy due to random initializations and
batches - that they might be only as good as the baseline, but appear so due to this occurrence.
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Unlike with WGT group, the resulting BGT and QGT accuracies do not consistently decrease as
the threshold increases, but rather rise and fall, as we expected. For BGT, increasing the threshold
means more data is sent per gradient, but places a tighter restriction on what gradients can even
participate – only those with magnitude greater than T . As T → 0, more gradients are communicated,
but are done so at a lower value, and at T = 0 all gradients are communicated as zero. As T →∞,
fewer gradients are communicated, but are done so at a higher value, and at T = ∞ no gradients
are communicated. QGT is similar as T →∞, but as its T → 0, its accuracy should increase since
it will decrease the remainder of floor-division – yet it becomes restricted by the artificial limit we
placed for the result to fit within a single byte.

Comparing the methods, we see WGT can maintain baseline accuracy while transferring 12.3% of
the total data, and can go 1.45% below the baseline while transferring 1.75% of the total data. BGT
never quite reaches baseline accuracy, but can achieve an accuracy of 2.22% less than baseline while
transferring a mere 0.023% of the total data. QGT can maintain baseline accuracy transferring 7.87%
and 1.65% below baseline for 0.23% of the total data.

The current standard for interconnects among computers, Infiniband, has a maximum packet size of
4KB. Therefore, since packets are sent serially, any reductions in communications down to 4KB will
result in reduced message transfer times, linear in the number of packets. The average data size sent
per node per iteration in most of our trials ranges in the hundreds to thousands of kilobytes, and even
in the case of least data communication (BGT with T =8.75e-3), it is 6.9KB; meanwhile the baseline
sends just over 30MB per iteration. And since these numbers exclude the matrix formatting data that
wraps them, the actual packet size in practice will be strictly greater (likely by a factor of 3 for sparse
matrices), assuming no network compression. Additionally our reductions result in a linear reduction
in the cost required to encode the data for network transfer, as well as a reduction in memory transfer
time for GPU-to-CPU transfer, down until the PCI bandwidth.

5 Conclusions

Overall, it is feasible to reduce training time of a distributed convolutional neural network by reducing
the interprocess communication between nodes. We’ve demonstrated three different methods of
compressing the interprocess communication, some with a slight accuracy loss, and others with a
slight accuracy bump over the baseline. We can reduce the O(n) synchronization time by reducing
the communication bandwidth via an O(1) computation-time and memory thresholding solution,
avoiding more complicated and/or expensive operations described by other communication-reducing
techniques.

The most efficient method, when observing the accuracy-to-GB ratio, is the Binarized Gradient
Transfer. But if lower accuracy is unsuitable for some application, Quantized Gradient Transfer and
Whole Gradient Transfer provide alternatives, as they can both achieve baseline and above-baseline
accuracies, but with varying efficiencies depending on the threshold chosen.

The results will likely show the same improvements with larger batch sizes, as exist in non-simulated
environments, as the gradients of each image in the batch will follow similar distributions. Regardless,
accuracy should be much higher when using a much larger batch size than possible on a single
machine.

6 Further Work

We’ve shown that there exists threshold values for all the above experiments, though finding that value
is a task in and of itself. By trying this same experiment on various network models and data inputs
and performing statistical analysis, ideally we would find a consistent relationship between the best
threshold value and the gradients in the network. Doing so would allow for automatic calculation of
the optimal threshold for any situation. This is clearly the most natural progression of this experiment
to explore next.

One extra observation to notice in the plots is that the percentage of gradients transferred increases
over time, meaning the sizes of many of the gradients increase with the iterations. We plotted the
percentiles of the gradient sizes (not shown here) to find that the gradients in almost every layer
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except the last do, in fact, increase over time. It would be interesting to investigate what this implies
for the network as a whole, and whether there are ways to exploit this to improve CNN architectures.
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