
Image Transformation via Neural Network Inversion

Asha Anoosheh Rishi Kapadia Jared Rulison

Abstract

While prior experiments have shown it is possible to ap-
proximately reconstruct inputs to a neural net given an out-
put from one of its frontal layers, it becomes increasingly
difficult as one moves toward the back layers, as the num-
ber of possible inputs that create the same output increases.
In a convolutional neural net that performs image classi-
fication, only the end result label can be interpreted as a
definite, concrete topic in the real world. Our experiment
makes use of the information obtained by inverting based
on a class label, the last layers output, to change an exist-
ing image to match said label rather than performing tradi-
tional inversion.

1. Introduction
1.1. Convolutional Neural Networks

An artificial neural network is a model used to transform
a large number of inputs into a different representation that
is more useful. It can learn the features to mutate data into
a different basis that can be used to separate and classify
different inputs. Convolutional neural networks (CNNs)
are like traditional fully-connected neural networks, except
they have fewer parameters and share weights to learn sim-
ilar features for different parts of the input domain. For this
reason, CNNs are better suited for the domain of images,
where the number of inputs (pixels) is large.

1.2. Related Works

Feature inversion of CNNs first arose from Mahendran
et al., who use deep feature representations to try to recon-
struct original images [3].

We were inspired by the work of Gatys et al. in repre-
senting the style of an image using feature responses at var-
ious levels of a CNN [1]. They combine the artistic style
of one image with the content of another. While we have
different goals, our loss function includes style and content
losses.

Wei et al. also uses a CNN to modify an image’s de-
tected class, but performs this by masking a key part of the
image then using a specific instance of another class to fill

the hole [5]. Our methods differ by using the network’s gen-
eral perception of a class rather than a single instance. We
also use a total-variation regularization term implemented
in their version, which is detailed later.

1.3. Goal

Given an image and a class label, our goal is to to visibly
alter the image until it classifies as said label when passed
through a trained CNN. Not only should the final modified
image classify as desired, but it should classify as strongly
as that class as possible. Additionally, incomprehensible
noise should not be applied to the image to achieve this, but
rather it should be changed in a visibly meaningful way that
reflects attributes of what one expects from the given class
label. We will exploit the non-linearity a neural network
provides to perform this optimization task.

2. Method

2.1. Inversion

As in the prior works, we apply the gradient of our loss
function to our input image, numerically altering it to mini-
mize the error (The loss function itself will be detailed in the
next section). Since we are minimizing loss L with respect
to the input image I , we must obtain the gradient dL

dI , and
backpropagation can give us exactly this. Backpropagation
computes the gradient of each layer with respect to its input,
and, using the chain rule, can compute the derivative of the
end loss layer with respect to the beginning input.

We do not need to train a network to achieve this; in
fact, we can utilize an existing network that has already
been trained for image classification that uses the classifi-
cation categories we are interested in. In our case we use
the VGG-19 network trained on the ILSVRC-2012 image
dataset [4]. The network’s weights are thus held constant,
and the calculation of the gradient with respect to weights
can be omitted during backpropagation.

Our implementation uses Caffe for Python and drew
heavily from Liu’s PyCaffe implementation of Gatys’ al-
gorithm [2].

We use L-BFGS as our optimization algorithm instead of
applying the gradient to the image directly, as it allows us to

1

Figure 1: Our Optimization procedure using VGG-19

ignore learning rates and other hyperparameters associated
with gradient descent.

2.2. Optimization Functions

Our main optimization function is the classification loss.
We use the softmax loss over the classes, which computes
the multivariate logistic cross entropy loss. We are not only
want to make our target class the highest probability, but
also want to push the probabilities for all the other classes
down, to make our image look as much like one class and
no other class as possible.

To modify our input image to match the desired class,
we used hand-tuned ratios of the following constraints:

The content loss preserves the geometry of the image. It
keeps the most important edges in the picture, with only
slight distortions. It takes the Euclidean distance of the
Gram matrix of the output image at the specified content
layer in the network with that of the specified content im-
age.

The style loss preserves the texture in the original image.
This computes the Euclidean difference of the Gram matri-
ces of the input image and the Gram matrix of the content
image. More information about this loss function and the
computation of the gradient can be found in Gatys et al. [1]

The total variation loss limits fluctuations between adja-
cent pixels. We took the total variation between both the
horizontal and the vertical neighboring pixels, and summed

both metrics into a single constraint function. The total vari-
ation of a function f over an interval [a, b] ⊂ R is given by

V b
a (f) = supP

nP−1∑
i=0

|f(xi+1)− f(xi)|

where the supremum runs over the set of all partitions of P
of the given interval. Since our network deals with a dis-
crete number of real numbers, the partition for which the
supremum is achieved simply the entire interval of the im-
age, or all the pixels. Thus, the formula becomes

V (I) =

N−1∑
i=0

|I(xi+1)− I(xi)|

where N is the number of pixels in the image. The image
is flattened to form I, by both row-major and column-major,
and the two resulting total variation metrics are added to
form the total variation loss.

The similarity loss was added to mitigate the large color
discrepancies between our input and resulting images. The
network would occasionally produce an image that was off-
set to a completely different color than the input. To limit
drastic color differences between the input and final images,
this constraint computes the squared differences between
the two images, but only considers the pixels for which the
difference is greater than 30 percent.

2

2.3. Masking

With just the implementations above, the network tries to
alter the entire image to classify correctly. This may intro-
duce unwanted artifacts to the background and any other ob-
jects that may be in the scene. To mitigate this problem for
certain input images, we compute the gradients over whole
image as before, but apply a manually-drawn mask to the
gradient before applying the updates. We have seen that for
some images, the mask tends to show improvement over the
prior case, namely the images which are far away from their
target class. However, for images which are close to their
target class, such as an image of a cat turning into a tiger,
there is not a significantly noticeable difference.

Deepdream also performed jittering of the input image
as regularization to stop pixel-specific cheating. Following

the same procedure, we randomly shift the image up and
down as much as 16 pixels in each direction before each
forward step. This should have the effect of mitigating the
drastic discrepancies between neighboring pixels, as well as
making the final image look more natural.

3. Results

We experimented with various combinations of the
aforementioned loss functions and masking schemes, and
we chose the following images as representative of the typ-
ical outcomes. The format is ”new-class (content-loss mul-
tiplier, style-loss multiplier, TV-loss multiplier, color-loss
multiplier).” The classification loss is always unscaled (x1),
so all other losses are relative to it.

Original dog image

Tabby cat
(0,0,0,0)

Tabby cat
(0,0,0,1e-6)

Tabby cat
(1e-14,0,0,0)

Brown bear
(-1e-11,0,1e-6)

Brown bear
(-6e-11,1e-13,1e-7,1e-6)

Dalmation
(0,1e-11,1e-6,0)

3

Original cat image

Hyena [unmasked]
(0,1e-9,5e-6,1e-8)

Hyena [body-masked]
(0,1e-10,1e-7,1e-6)

Tiger [face-masked]
(0,0,0,0)

Tiger [face-masked]
(1e-10,1e-7,1e-9,1e-8)

Hole-filling with tiger label Hole-filling with bear label Hole-filling with gecko label

Brown bear [jittered]
(0,1e-11,0,0)

Tabby cat [jittered]
(0,0,0,0)

Tiger [jittered]
(1e-10,0,-1e-12,1e-11)

Tiger [body-masked, jittered]
(1e-10,-1e-12,0,1e-11)

4

Interesting accidental outcomes

4. Analysis
Using no constraints (all non-classification loss multipli-

ers 0) tended to result in only somewhat-relevant noise be-
ing added to the image. Going from the first to second row
in the first column demonstrates that the adding of Style
and TV Losses reduces visually displeasing rainbow noise
while maintaining desired alterations such as darker fur and
emphasized stripes. Going from the second row to the third
in the first column demonstrates that the adding of Content
Loss smoothed the edges present in the original image, such
as between the cat and the background and between differ-
ent colors of fur.

We found the most success when modifying animals to
related animals. We believe this is a result of the classes
being distanced closely on the feature manifold, sharing
shapes and textures. We were able to produce changes
in texture such as stripes in the Tiger rows, darker fur in
Tiger, Hyena, and Brown Bear, and spots in Dalmatian. The
network was reluctant to produce changes in color beyond
slight darkening or lightening.

We were unable to use the L-BGFS algorithm when us-
ing jittering, so we had to use simple gradient descent. Of-
ten, jittering helped to change the geometry of the image,
but it also added undesirable colorful swirls to the image.
The right-most ”interestingi accidentl outcome” is an ex-
treme example of the swirls. Sometimes it blurred the im-
age due to the shifting and adding of the gradients.

5. Conclusion
Overall, we have obtained great results. We were un-

able to make progress modifying classes such as cucum-
bers, goldfish, and tennis balls. This may be due to a lack
of closely related classes and easily modifiable textures in

the original images. In addition, it was infeasible to signifi-
cantly modify the geometry of the original image, since too
negative of a content loss resulted in the included bloopers.

6. Further Work

One followup to this is abusing the constraints in un-
conventional ways to try to turn random noise into unpre-
dictable artwork, similar to our failed examples above. Ini-
tializing the input image as random noise, and then trying
to alter this image to classify as a specific class, we would
hope to see the ”average” representative of that class, with-
out the blurring effects of a simple average image. With
just the classification loss, it is more likely that the random
noise will stay random but still classify correctly, since the
random noise is not in the manifold of real images that the
network was trained with. However, introducing and tuning
our loss functions and others should constrain the resulting
image to appear more along this manifold.

References
[1] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm

of artistic style. CoRR, abs/1508.06576, 2015.
[2] F. Liu. style-transfer. https://github.com/fzliu/

style-transfer, 2015.
[3] A. Mahendran and A. Vedaldi. Understanding deep image

representations by inverting them. CoRR, abs/1412.0035,
2014.

[4] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[5] D. Wei, B. Zhou, A. Torralba, and W. T. Freeman. Un-
derstanding intra-class knowledge inside CNN. CoRR,
abs/1507.02379, 2015.

5

https://github.com/fzliu/style-transfer
https://github.com/fzliu/style-transfer

