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Abstract—For years, researchers have been manually classify-
ing images, searching for new supernovae. We propose a system
for automatically detecting supernovae. Our multi-step pipeline
takes in two images, a template image of the sky and a subject
image, and produces a trained classifier that detects supernovae
in subtracted images.

I. INTRODUCTION

The purpose of our system is to detect supernovae early on,
sooner than existing manual detection systems. In doing so, we
can observe supernovae over the course of their lifetime. The
advantage of additional time is to enhance existing models of
supernovae light curves at infancy stages. Until recently, most
supernovae have not been detected soon enough to measure
characteristics at early stages.
Our work will utilize the Katzman Automatic Imaging Tele-
scope (KAIT) at the Lick Observatory in San Jose, California.
Using telescope data obtained over the course of two decades,
we train our system to quickly and accurately identify new
supernovae in the night sky.

II. IMAGE ALIGNMENT WITH FOURIER SPECTRUM
ANALYSIS

We develop a system for aligning images by define a
template image and a subject image for alignment. Due to
the possible variations in weather and exposure, the Fourier
spectral content of each individual image is analyzed in place
of the direct pixel content of the images. To do this, we take
the two-dimensional Discrete Fourier Transform (DFT) of the
images in question, given by:

F (k, l) =
N−1∑
i=0

N−1∑
j=0

f(i, j)e−i2π(
ki
N + lj

N )

for an N × N image, where f(a, b) represents the image in
the spatial domain and F (k, l) represents the corresponding
Fourier space.
This technique provides more accuracy and clarity for de-
termining rotation and translation of our subject image with
respect to the template image. Our system considers analysis
at a base of 0 degrees, with ±20 degrees of freedom. Note that
any arbitrarily defined rotation and degree of freedom can be
defined with our system. In addition, a deterministic number
of iterations is provided for the depth of analysis one wishes
to perform on the subject image in comparison to the template
image. The typical range for iterations is between one to three

iterations. From there, the similarity of the two images are
considered and a rigid transformation is applied to the subject
image. We define the transformed, subject image to be our
subject image with rotation and translation applied.

III. IMAGE SUBTRACTION WITH POINT SPREAD
FUNCTION (PSF) CORRECTION

Now with a template image and transformed, subject image,
we proceed to perform image subtraction. The Earth’s atmo-
sphere causes light from stars to spread in a Gaussian shape,
and in varying amounts due to weather and exposure lengths.
It can be approximated as a convolution, due to symmetry, on
the image. To account for these possible differences in weather
patterns and also exposure times between photographs, we
determine a convolutional kernel K that matches with the point
spread function (PSF). We define our PSF to be the following
formula: ∑

([S ? K](x, y)− T (x, y))2

where S represents our transformed, subject image, T repre-
sents our template image, and K represents our convolutional
kernel. We decompose the kernel K onto basis functions in
order to make this a linear least-squares problem:

K(u, v) =
∑
n

an(x, y)Kn(u, v)

where Kn is represented by:

Kn(u, v) = e−(u2+v2)/2σ2
kuivi

The idea behind this technique is that given the same star on
two separate images with differing exposure times, without
loss of generality, a star in the template image could be double
in radius in comparison to the same star in the transformed,
subject image. We can then use this technique to approximate
a match between the two stars and therefore when performing
image subtraction, correctly remove the matching stars.

To perform these operations, we use High Order Transform
of Point Spread Function and Template Subtraction (HOT-
PANTS). HOTPANTS works by dividing the provided images
into several regions and fitting a convolution kernel for each
region. The kernel sum is used to sigma clip outliers from the
distribution when solving for individual sections of regions.
HOTPANTS successfully blends and subtracts the template
and transformed, subject image, outputting a subtracted image.
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Fig. 1: Template Image

Fig. 2: Subject Image

IV. EXTRACT AREAS OF INTEREST

With the subtracted image, our system proceeds to use
Source Extractor (SExtractor) for automated detection and
photometry. Our goal in using this is to detect any points
of interest in the subtracted image, where interest points
are meant to represent new astronomical bodies previously
unaccounted for in the template image. SExtractor works by
determining what the background is and proceeding to check
whether pixels belong to an object or to the background. We
generate an index of (x, y) coordinates which represent the
points of interest. Note that each coordinate pair comes with
a flux value that can be used for thresholding.

Often times, SExtractor will identify points that are false
positives. These are commonly noise or artifacts left over from
the image processing steps. Our system remedies this by filter
out true positives by means of statistical learning.

Fig. 3: Subtracted Image with Marked Supernovae

V. SUPERVISED CLASSIFICATION

General supervised learning entails learning a model from
a training set of data for which we provide the desired output
for each training example. A set of data known as training
examples must be given to the learning algorithm, from which
a trained model is obtained, and this model can be used now
to return desired outputs for future examples. In this case
we want to designate a detection as a real transient or an
artifact, and thus the problem is a supervised classification
task involving two classes: true and false. Classification is
a common machine-learning task that can be performed by
many various algorithms.

These algorithms come in two flavors: discriminative and
generative. The former attempts to find a decision boundary
within the data, so that it best divides the data into two
spaces, such that it minimizes the number of examples that
fall on the wrong side of the boundary. The latter creates
probability distributions based off the examples of each
class, forming implicit decision boundaries that signify where
the probability of belonging to each class is equal. The
boundaries for discriminative classifiers are linear by default.
To address this, special mapping functions known as kernels
can be applied to the data. The details of kernels are much to
elaborate on here, but, in short, they allow for nonlinear, and
therefore more powerful, decision boundaries.

With more power comes more responsibility, as very pow-
erful decision boundaries may separate the training data very
well, but fail to generalize for new, unseen inputs. This is
called overfitting - when the model tailors itself too well to the
data at hand. Models usually have one or more free variables
in their algorithms known as hyperparameters, which can be
set properly to combat overfitting. These need to be tuned
somehow to best fit a specific dataset; this is usually done
by the user trying cross-validation on various values for each
hyperparameter.
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VI. LOGISTIC REGRESSION AND SUPPORT VECTOR
MACHINES (SVM)

In our case, the ideal situation would be to have - not a
discrete output (0 or 1) - but continuous values indicating
the probability of an example belonging to a class. A known
discriminative procedure that does exactly this is known
as Logistic Regression. Although it performs regression, it
returns values in the range 0 to 1, indicating how likely an
example is to be of a certain class, with the decision boundary
returning 0.5. This would aid in knowing which examples
are near the boundary and thus possibly false-positives or
false-negatives that could be manually inspected if needed.
Unfortunately this process is limited to a linear decision
boundary that may not be powerful enough in all cases.
And although its kernelized counterpart, Kernel Logistic
Regression (KLR), can generate a nonlinear boundary, it is
considered unreasonable performance-wise.

The solution being used here instead is the Support
Vector Machine (SVM) (Cortes & Vapnik 1995.) This is
a well-known classifier that can be used with any kernel,
and it runs much faster than the previous methods. The
downside is that SVMs do not generate probabilities as they
are discriminative. A workaround is a procedure known
as Platt calibration, which performs a logistic transform of
the SVMs binary outputs. Given a classification function
f , inputs x, and true class y, the calibration process computes:

P (y = 1 | x) = 1

1 + eAf(x)+B

where A and B are learned by the algorithm through
maximum-likelihood estimation. Although this process
involves running the SVM procedure multiple times (for
cross-validation), in practice it is still faster than KLR.

SVMs have a single hyperparameter C, and the RBF (Radial
Basis Function) kernel used in our model comes with γ,
its own parameter. C controls the complexity of the SVM
boundary, making it more rigid or flexible to change, while
γ controls the influence that data points have on the decision
boundary.

VII. FEATURE REPRESENTATION

A single input for a machine-learning algorithm is merely a
set of features, usually represented as a vector. The classifier
uses these features to make informed decisions about the data
as a whole, naturally finding features that separate the data
the best.

Our algorithm cuts out a 15 by 15 pixel region of the image
surrounding the center of the recorded supernova, and we use
the pixel values as our features directly, by unravelling it into
a vector of length 225. Our data is of small enough dimension
that no dimensionality reduction is required. The experiment
is run with and without normalization of data for comparison.

Fig. 4: Extracted Cutout of Supernovae

Fig. 5: Matrix Representation of Sample Training Data

VIII. TRAINING DATA

Over the past couple decades, the Katzman Automatic
Imaging Telescope (KAIT) has been taking images of specific
regions in the night sky. Until now, trained researchers have
examined the captured images for signs of young supernovae
and marked their WCS (World Coordinate System) locations,
via a method similar to the template subtraction pipeline
described previously. We can remove equal-sized patches
surrounding the supernovae positions as positive training
examples.

To acquire negative training data, patches of the same size
are extracted from the image everywhere except for where
the supernova resides. Since we have much more of this
negative data than positive data, we can weigh the examples
inversely proportional to their count to balance the classifier.
This places importance on correctly classifying the positive
data, otherwise, the classifier will tend to mark everything as
negative simply due to sheer quantity.

IX. PIPELINE

Having the absolute coordinates of the known supernovae,
the templates, and the new images, we can create our own
training set. By subtracting each template from its correspond-
ing new image, we get all new light sources in the sky. And by
converting the WCS coordinates into pixel values in the image,
using the aperture type and telescope direction information
found in the header of each image file (FITS format), we can
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cut out a patch of image around that pixel which will contain
our supernova. We can also produce three rotated versions of
this patch to feed as more training data, as supernovae are
rotation-invariant.
We then feed these to SkLearn’s support-vector classifier and
save the trained model to disk for future use. Upon prediction
of new data points, Pratt calibration with 5x-cross validation is
performed to output probabilistic outputs indicating likeliness
of real supernova instead of binary ones (closer to 1.0 means
higher chance of being real supernova, and closer to 0.0 means
higher chance of being noise or an artifact.)

X. FUTURE WORK

An interesting learning algorithm that caught our attention
was the Import Vector Machine (IVM) (Zhu and Hastie 2005).
This is a model that tries to solve the computational expense
of Kernelized Logistic Regression by implementing it with
one-step look-ahead greedy selection of the non-zero dual
coefficients. We would like to compare the results of this novel
algorithm with the tried-and-true SVM.

XI. CONCLUSION

Our system is designed to work with imaging data from
most telescopes and uses machine learning to quickly iden-
tify supernovae. Extracted points of interest are efficiently
processed for classification training. The system will benefit
astronomers with their work on enhancing existing models of
supernovae features at infancy stages.
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